
1. Halbebenen-Model der hyperbolischen Ebene

Jedes g ∈M erhält Doppelverhältnisse, wenn alle vier Punkte nicht
nach∞ geschickt werden. Seien nun A,B,C,D paarweise verschiedene
Punkte in Ê. Ist einer der Punkte∞ so erstzen wir das Doppelverhältnis
durch die Proportion der beiden ”endlichen Abstände”. Ist z.B. A =
∞, so setzen wir

AC ·BD

AB · CD
=

BD

CD

.
Auch dieses erweiterte Doppelverhältnis wird von jedem Element

g ∈ M ′ erhalten. Denn jede Ähnlichkeit erhält ∞ und alle Propor-
tionen. Wir müssen also nur überpr”ufen, dass jede Inversion dieses
”erweiterte” Doppelverhältnis erhält. Dies zeigt man genau so, wie im
vorherigen ”endlichen” Fall.

Sei Γ ein Kreis in der Euklidischen Ebene E, sei H das Innere des
Kreises Γ. Ist l eine Gerade in E so gibt es eine Möbius-Transformation
g ∈ M , die Γ auf l̂ abbildet. Dann muss g(H) eine l-Halbebene sein.
Zykel in E die Γ senkrecht schneiden werden auf Zykel abgebildet, die
l senkrecht schneiden. Damit erhalten wir das Folgende Halbebenen-
Model H ′ der hyperbolischen Ebene, das isometrisch zu H ist (mittels
der Abbildung g):

Die Elemente von H ′ sind Punkte einer Euklidischen Halbebene bzgl.
einer Geraden l. Die Geraden in H ′ sind Halbkreise, die l senkrecht in
den Endpunkten schneiden und auf l senkrecht stehende Strahlen. Das
Winkelmaß ist das Euklidische Winkelmaß zwischen den Bögen. Der
Abstand zwischen zwei Punkten wird durch das Doppelverhältnis wie
in H berechnet: Sind P,Q ∈ H ′, so gibt es genau einen Zykel Z, der
P,Q enthält und l senkrecht schneidet. Ist Z ein Kreis, so schneidet es
l in A,B und der Abstand ist

ln
AQ ·BP

AP ·BQ

Ist Z eine Gerade, so schneidet es l in einem Punkt A (der andere
Punkt ist ∞) und der hyperbolische Abstand zwischen P,Q in H ′ ist

ln
AQ

AP

Wieder sind die eigentlichen Isometrien von H ′ genau diejenigen El-
emente g ∈M , für die g(H ′) = H ′ gilt.
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2. Komplexe Koordinaten

Wir identifizieren E mit R2 und diese Koordinaten Ebene wie üblich
mit C.

SATZ 2.1. Die Ähnlichkeiten f : C → C sind genau alle Abbildun-
gen der Form f(z) = a · z + b oder f(z) = a · z̄ + b, mit komplexen
Zahlen a, b, wobei a 6= 0. Die Abbildungen erster Art sind genau die
winkelerhaltenden Ähnlichkeiten.

Beweis. Die Abbildungen z → z + b sind genau die Verschiebungen,
die Abbildungen z → r · z mit 0 < r ∈ R sind genau die zentrischen
Streckungen mit Zentrum in 0 und die Abbildungen z → eiφ · z und
z → eiφ·z̄ sind genau die eigentlichen bzw. uneigentlichen Bewegungen,
die 0 festhalten. �

Die Inversion IΓ am Kreis mit Radius r und Zentrum c ∈ C hat die

Form IΓ(z) = c + r2·(z−c)
|z−c|2 , für z 6= c. Die Konjugation z → z̄ ist die

Spiegelung S an der y-Achse, und die Komposition S ◦ IΓ hat folglich
die Form z → c̄ + r2

z−c . Jetzt können wir zeigen:

SATZ 2.2. Die Möbiustransformationen sind genau Abbildungen der
Form fa,b,c,d(z) = az+b

cz+d
mit komplexen Zahlen a, b, c, d, die ad− bc 6= 0

erfüllen.

Beweis. Die obige Abbildung sollte so verstanden werden, dass f(∞) =
a
c
, wenn c 6= 0 und f(∞) = ∞ sonst. Ferner setzen wir f(−d

c
) = ∞,

wenn c 6= 0.
Die Abbildungen f(z) in der obigen Form mit c = 0 sind genau alle

winkelerhaltenden Ähnlichkeiten. Für c 6= 0 haben wir alle Abbildun-
gen der Form

f1(z) =
a1z + b1

z + d1

= a1 +
b1 − a1d1

z + d1
.

Damit ist jede solche Abbildung die Komposition von Translatio-
nenn, Multiplikationen mit komplexen Zahlen und einer Abbildung der
Form S◦IΓ wie oben, also ist jedes solche f eine Möbiustransformation.

Andererseits ist jede Möbiustransformation eine Ähnlichkeit, oder
die Komposition von einer Abbildung S◦IΓ wie oben und einer eigentlichen
Bewegung, hat also die obige Form. �

Einsetzen und nachrechnen ergibt:

SATZ 2.3. Die Abbildung

(
a b
c d

)
→ fa,b,c,d ist ein Gruppenhomorophis-

mus von GL2(C) nach M . Der Kern sind genau die Diagonalmatrizen.
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Ist H ′ die ober Halbebene, d.h., die Menge aller komplexen Zahlen
x + i · y mit y > 0, so erfüllt g ∈ M genau dann g(H ′) = H ′, wenn es
durch ein Element fa,b,c,d mit a, b, c, d ∈ R repräsentiert werden kann.

3. Und wieder das Scheibenmodell

Wir können mit Hilfe der komplexen Zahlen den hyperbolischen Ab-
stand in der Einheitskreisscheibe H zwischen zwei Punkten z, z0 6= 0
wie folgt ausdrücken. Ist Γ∞ der Einheitskreis, so ist das Bild von z
unter der Inversion an Γ∞ der Punkt z1 = 1̄

z
. Der Radius r des Kreises

Γ um z1 ist
√
|z1|2 − 1. Das Bild z2 von z0 unter der Inversion an Γ ist

z1 + r2·(z0−z1)
|z0−z1|2 .

Wenn wir z1 und r durch z ausdrücken und den Ausdruck verein-
fachen, sehen wir z2 = z

z̄
· z0−z
z̄0z−1

. Hence

|z2| =
|z0 − z|
|z̄0z − 1|

. Und der hyperbolische Abstand von z0 und z1 ist

log(
1 + |z2|
1− |z2|

)
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